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Abstract— In multi-robot systems, although the idea of be-
haviors allows for an efficient solution to low-level tasks, high-
level missions can rarely be achieved by the execution of a single
behavior. In contrast to this, a sequence of behaviors would
provide the requisite expressiveness, but there are no a priori
guarantees that the sequence is composable in the sense that the
robots can actually execute it. In order to guarantee a provably
correct composition of behaviors, Finite-Time Convergence
Control Barrier Functions are introduced in this paper to
guarantee the terminal configuration of one behavior is a valid
initial configuration for the following one. Nominal control
inputs prescribed by the behaviors are modified in a minimally
invasive fashion, in order to establish the information-exchange
network required by the following behavior. The effectiveness
of the proposed composition strategy is validated on a team of
mobile robots.

I. INTRODUCTION

Teams of autonomous robots have a wide range of real-

world applications including search and rescue [3], envi-

ronmental surveillance [8] and space exploration [12]. Such

high-level missions often require the team to accomplish a set

of tasks through collective decision making and coordinated

control. For example, the MAGIC 2010 competition [19]

addressed a search and rescue scenario, where the robots

were expected to complete a series of tasks including ex-

ploration, sensor fusion, target localization and human-robot

interaction.

Given the complexity of these high-level missions, it is

natural to decompose them into a sequence of dedicated coor-

dinated tasks and design behaviors which achieve each of the

tasks independently. In the context of multi-robot systems,

this decomposition is particularly advantageous because (i)

there has been a variety of coordinated behaviors developed

for elementary tasks such as flocking [17], rendezvous [18],

formation control [7], etc, and (ii) the computational burden

would quickly become intractable if the complete mission

is addressed as a single, highly complex search problem.

Hence, it is favorable to leverage well-established and prov-

ably correct coordinated behaviors to achieve complicated

missions by composing these behaviors.

The main challenge associated with such composition is

that most behaviors rely on a set of underlying assumptions
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Fig. 1: Examples of different approaches in behavior com-

position. In (a), a hand-crafted transition behavior is used

as a “glue” to ensure the communication graph structure

is established for the following behavior [23]. In (b), the

approach presented in this paper is shown, where each of

the individual behaviors is modified in order to provide a

“preemptive glue” for the composition.

to function as desired. One of the common assumptions for

coordinated behaviors is the presence of sufficiently rich

proximity-based information-exchange networks. For exam-

ple, in order to have the robots rendezvous, the information-

exchange network should remain connected [17]. Therefore,

in order to complete the high-level mission through a se-

quence of behaviors, not only should each of the single

behaviors be correct, but their assumptions should also be

satisfied both at the starting time of the behaviors and

throughout their execution.

The decomposition of high-level missions into simple

tasks is done routinely for single robots, e.g., [2], even

with formal guarantees on the overall performance [6]. The

idea to decompose complex missions has also been explored

in the context of multi-robot systems using models such

as Petri Nets [10], finite state automata [13], stochastic

processes [16], temporal logic specifications [11], [21], em-

bedded graph grammars [9], [22], and graph process speci-

fications [23]. However, that body of work is typically task



specific. But more importantly, it focuses on conditions and

formalisms for characterizing when a sequence of behaviors

can be composed together. Although a subset of this work

proposes transition behaviors to be inserted between behavior

pairs that are not composable [23], such hand-crafted tran-

sition behaviors are not always desirable because they are

often elaborate and time-consuming. In this paper, we take

a different view of this problem by actively modifying the

behaviors so that they are provably composable, as illustrated

in Fig. 1.

In this paper, we focus on providing formal guarantees on

composition of coordinated behaviors. Namely, ensuring that

once a behavior terminates, the underlying assumptions for

the upcoming behavior are satisfied. We develop a variant of

control barrier functions (CBFs) [1], [5] called Finite-Time

Convergence Control Barrier Functions. By encoding the as-

sumptions for each behavior into constraints on Finite-Time

Convergence Control Barrier Functions, we can synthesize

controllers that formally guarantee that (i) if the assumptions

required by a behavior are satisfied at some point, they

will remain satisfied thereafter. On the other side, (ii) if the

assumptions are not satisfied initially, they will be satisfied

within finite time.

The main contribution of this paper is two-fold. Firstly, a

variant of control barrier functions is introduced to ensure

that the states evolve into the desired subset of the state

space within finite time. Secondly, a framework based on

control barrier functions is presented to actively modify the

behaviors so that the resulting composition of behaviors

proves formally correct.

The rest of this paper is organized as follows. Section II

formulates the behavior composition problem. Section III

introduces finite-time convergence control barrier functions

and discusses their application in the context of the behavior

composition problem. Section IV proposes a framework for

composition of behaviors with theoretical guarantees. At last,

experimental results and conclusions are in Section V and

Section VI, respectively.

II. COMPOSITION OF COORDINATED BEHAVIORS

Consider a homogeneous robotic team consisting of N

mobile robots with integrator dynamics in an uncluttered

2-dimensional environment, i.e., ẋi = ui, where xi ∈ R
2,

ui ∈R
2 are the state vector and control input for robot i. Let

x = [x⊤1 , ...,x
⊤
N ]

⊤ and u = [u⊤1 , ...,u
⊤
N ]

⊤ denote the joint state

vector and control input for the robotic team, respectively.

The communication graph structure of the robotic team

is defined as G (t) = (V,E(t)), where V = {1,2, ...,N} is

the vertex set consisting of N mobile robots and E(t) is

the set of edges at time t. We assume a proximity-based

communication graph, namely, the presence of an edge (i, j)
indicates that robot i and robot j are within a communication

distance of Dc, i,e.,

(i, j) ∈ E(t) ⇐⇒ ‖xi(t)− x j(t)‖ ≤ Dc, (1)

where the communication graph is time-varying due to the

motion of robots.

The high-level mission of the robotic team is provided

by the human operator before the operation. The mission

is specified through a motion sequence σ , consisting of M

coordinated behaviors, e.g., flocking [17], rendezvous [18],

formation control [7], etc. We assume that a rich enough

communication graph is a sufficient condition for each

coordinated behavior to function as desired, which is a com-

mon requirement for decentralized coordinated behaviors.

For example, a strongly connected communication graph

guarantees that the flocking and rendezvous behaviors can

be achieved through consensus [18], and a rigid graph is re-

quired for a formation control law to function correctly [15].

We use notations similar to the motion description lan-

guage [14] to specify the sequence of behaviors, namely,

σ = (U1,G1,τ1), · · · ,(UM,GM,τM), (2)

where each coordinated behavior is represented by a tuple

(Uk,Gk,τk). Here, Uk, Gk, and τk are the coordinated con-

troller, required communication graph structure, and starting

time of behavior k, respectively. The required graph structure

Gk is defined through (V,Ek). To ensure that behavior k is

executed correctly, the required graph Gk should remain a

spanning sub-graph of the actual communication graph G (t)
throughout the execution of behavior k, i.e., (i, j) ∈ E(t),
∀(i, j) ∈ Ek, t ∈ [τk,τk+1). A segment of an example motion

sequence is shown in Fig. 2.

Timeline

Fig. 2: A segment of a sequence of formation control

behaviors for a team of five robots. Each formation control

behavior k starts at τk and requires a communication graph

structure Gk in order to function properly. The proposed

framework assigns a preparation time interval of length ∆k,

during which the preceding behavior is modified so as to

establish the required communication graph structure by the

time of τk.

Based on the aforementioned assumptions, any two adja-

cent behaviors can be composed together through assembling

a complete communication graph during the transition, since

the required communication graph for any behavior is a

spanning sub-graph of a complete graph. In fact, [23] makes

use of this observation and inserts hand-crafted transition

behaviors such that a complete communication graph is

formed during the transition, as is shown in Fig. 1a. In

this paper, however, we modify the behaviors during their

execution in a way that the behaviors can be composed in a

less invasive manner.

Note that although we consider the communication graph

structure as the only type of constraints required for the



functioning of a behavior, one must acknowledge that dif-

ferent types of constraints could be considered as well, e.g.

the position of a robot in the global frame of reference,

or the relative bearings. In fact, the technique developed in

this paper is rather general and can be extended to other

constraints as long as they can be encoded through control

barrier functions introduced in Section III.

In summary, to ensure that the composition of behaviors

is valid, we need to make sure that each behavior k starts

with the required graph structure Gk assembled, i.e., Ek ⊂
E(τk), and the required communication graph structure is

maintained throughout the execution. To this end, we de-

velop Finite-Time Convergence Control Barrier Functions to

provide theoretical guarantees on composition of behaviors.

III. FINITE-TIME CONVERGENCE CONTROL BARRIER

FUNCTIONS

In this section, we present Finite-Time Convergence Con-

trol Barrier Functions that are essential for valid behavior

composition. We will start with the general formulation that

is applicable to any control affine system. Then we will in-

troduce the application of Finite-Time Convergence Control

Barrier Functions on establishing a required communication

graph structure within finite time.

Consider a nonlinear control system in control affine form,

ẋ = f (x)+g(x)u, (3)

where x ∈ D ⊂ R
n and u ∈ U ⊂ R

m, f and g are locally

Lipschitz continuous. For the sake of simplicity, we assume

that (3) is forward complete, i.e. solutions x(t) are defined

for all t ≥ 0.

Without loss of generality, let the desired set for the state

of the system be defined as a super-level set of a continuously

differentiable function h(x),

C = {x ∈ R
n : h(x)≥ 0}. (4)

In order to guarantee the correct functioning of each

behavior, the corresponding constraints must be satisfied

at the behavior’s starting time, and throughout its entire

duration. This, in the context of controller design, can be

translated as follows. (i) For trajectories that start outside

C , they should enter C within a specific finite interval of

time. (ii) The controller should render the desired set forward

invariant, i.e., if solution of (3) starts in the set C , it will stay

in C for all future time.

Control barrier functions [1], [5] are Lyapunov-like func-

tions that are used to provably ensure the forward-invariance

of a desired set. Therefore, by their definition, the use of

control barrier functions automatically guarantees the satis-

faction of the forward invariance requirement. In addition

to the forward invariance property, Zeroing control barrier

functions [24], a variant of control barrier functions, can be

used to guarantee that the state will converge to the boundary

of the desired set asymptotically when its initial condition

lays outside of the desired set. However, in the context of

this paper, since the behavior composition problem is defined

by a sequence of predefined starting time of behaviors,

asymptotic convergence guarantees are not sufficient.

In order to provide theoretical guarantees for both for-

ward invariance and finite-time convergence, we propose a

new variant of control barrier functions called Finite-Time

Convergence Control Barrier Functions.

Definition III.1. Given a dynamical system (3) and the set

C defined by (4) with a continuously differentiable function

h : Rn → R, if there exist real parameters ρ ∈ [0,1),γ > 0,

and a set C ⊆ D ⊂ R
n such that, for all x ∈ D ,

sup
u∈U

[

L f h(x)+Lgh(x)u+ γ · sign(h(x)) · |h(x)|ρ
]

≥ 0, (5)

then the function h is called a Finite-time Convergence

Control Barrier Function (FCBF) defined on the set D .

Given a FCBF h, the set of feasible control inputs is,

K(x) =
{

u ∈U :

L f h(x)+Lgh(x)u+ γ · sign(h(x)) · |h(x)|ρ ≥ 0
}

.
(6)

Proposition III.1. Given a set C ⊂ R
n associated with a

FCBF h(x) defined on D with C ⊆D ⊂R
n, and parameters

ρ ∈ [0,1),γ > 0, any continuous controller u : D → U such

that u ∈ K(x) for the system (3) renders the set C forward

invariant. Moreover, given the initial state x0 ∈ D \C , any

continuous controller u : D →U such that u ∈ K(x) for the

system (3) drives the state x(t) to C within finite time T =
1

γ(1−ρ) |h(x0)|
1−ρ .

Proof. Consider the Lyapunov candidate function V (x) =
max{−h(x),0}. The function satisfies, V (x) = 0 for x ∈ C ,

V (x)> 0 for x∈D \C , and V̇ (x(t))≤−γ ·V ρ(x(t)) for t > 0.

Assume that x0 ∈ C . By the comparison lemma [4],

V (x(t)) = 0 for all t > 0. Therefore, u ∈ K(x) renders the

set C forward invariant. Assume that x0 ∈D \C . According

to [4], the state x will converge to the set C in finite time

within T = 1
γ(1−ρ) |h(x0)|

1−ρ .

To sum up, we can use Finite-Time Convergence Control

Barrier Functions to design controllers ensuring that the

system will enter the desired set within finite time and stay

in the set thereafter.

A. Communication Graph Barrier Certificates

Here we discuss how to establish a communication graph

structure within finite time using Finite-Time Convergence

Control Barrier Functions. As discussed in Section II, assume

that the robotic team is required to establish a communication

graph Gk = (V,Ek) by time τk. For each single edge (i, j) ∈
Ek, the edge requirement can be encoded into a set C̄i j

defined by a function h̄i j, where,

C̄i j = {x ∈ R
2N : h̄i j(x)≥ 0},

h̄i j(x) = D2
c − (xi − x j)

⊤(xi − x j).
(7)

Then, the overall communication graph requirement for

behavior k can be encoded into a single set C̄k as the

intersection of C̄i j for each (i, j) ∈ Ek,

C̄k =
⋂

(i, j)∈Ek

C̄i j. (8)



If the states enter C̄i j before τk for all (i, j)∈ Ek, the states

will enter C̄k before time τk. Hence, if the time derivative of

h̄i j(x) satisfies,

˙̄hi j(x)+ γ · sign(h̄i j(x)) · |h̄i j(x)|
ρ ≥ 0, (9)

for all (i, j) ∈ Ek, the required communication graph will be

formed within finite time. Therefore, by assembling all the

communication graph constraints in (9) together, we get the

communication graph barrier certificates B̄k for behavior k,

B̄k =
{

u ∈ R
2N : ˙̄hi j(x)+ γ · sign(h̄i j(x)) · |h̄i j(x)|

ρ ≥ 0,

∀(i, j) ∈ Ek

}

.
(10)

By restricting the control input u to the certificates B̄k,

the robotic team is guaranteed to assemble the required

communication graph structure Gk within finite time. This

result is summarized in the following theorem.

Theorem III.2. Given a required communication graph

structure Gk = (V,Ek) and a robotic team with initial state

x0, any controller u(x) ∈ B̄k(x) can assemble the required

graph Gk within finite time duration

Tk = max
{(i, j)∈Ek:x0 /∈C̄i j}

{

1

γ(1−ρ)
|h̄i j(x0)|

1−ρ

}

.

Proof. Consider any pair of robots i and j with (i, j) ∈ Ek.

Since the controller u(x) satisfies the pairwise communica-

tion graph barrier constraint in (9), according to Proposi-

tion III.1, if x0 /∈ C̄i j, the system will be driven into C̄i j

within time duration Ti j =
1

γ(1−ρ) |h̄i j(x0)|
1−ρ . Also according

to Proposition III.1, if x0 ∈ C̄i j, the system will stay within

C̄i j. Note that in this case h̄i j(x0)≥ 0 and Ti j = 0.

Since every set C̄i j will be reached within time duration

Ti j =
1

γ(1−ρ) |h̄i j(x0)|
1−ρ if x /∈ C̄i j, the overall communication

graph structure requirement encoded by C̄k will be satisfied

within finite time duration

Tk = max
{(i, j)∈Ek:x0 /∈C̄i j}

{

1

γ(1−ρ)
|h̄i j(x0)|

1−ρ

}

.

According to Theorem III.2, we just need to activate

the barrier certificates for an appropriate time interval ∆k

before τk, where ∆k needs to satisfy Tk ≤ ∆k ≤ τk − τk−1.

Then, the required communication graph structure Gk is

guaranteed to be constructed before the behavior starting

time τk. One may notice that the parameters γ and ρ need to

be selected accordingly so that such an ∆k exists. The design

strategies for choosing these parameters are further discussed

in Section V-C.

IV. THE BEHAVIOR COMPOSITION FRAMEWORK

In this section, we introduce a behavior composition

framework anchored by Finite-Time Convergence Control

Barrier Functions discussed in the previous section. The main

feature of our framework is that there are no explicit tran-

sition modes inserted between behaviors. When executing

behavior k, the robots also need to prepare for behavior

k + 1, i.e., all the edges in Gk+1 for behavior k + 1 need

to be established in the communication graph before time

τk+1. We present a framework consisting of a sequence of

optimization-based controllers constrained to communication

graph barrier certificates. Each of the optimization-based

controllers is a minimally invasive controller, i.e. each behav-

ior will be modified only when required by its composition

with the following behavior.

A. Optimization-based Controller

We propose an optimization-based controller that respects

the communication graph barrier certificates B̄k(x) while

keeping the modification to each behavior minimal. We

assume that a nominal controller ûi,k for each robot i and

behavior k is designed with existing control techniques and

is given while executing the behaviors.

For each behavior k, we divide the time interval during

which behavior k is executed into two phases: before acti-

vating B̄k+1 and after activating B̄k+1, i.e., before and after

the robots start to get prepared for behavior k+1. Let ∆k+1

be the preparation time for behavior k + 1. Then the first

phase is formally defined over t ∈ [τk,τk+1 −∆k+1), and the

second phase is defined over t ∈ [τk+1 −∆k+1,τk+1).
First, consider the phase when the robots are not preparing

for the next behavior. In this case, the robots only need to

maintain the communication graph structure required by the

current behavior k. Therefore, the goal is to make the actual

control input ui as close to the nominal control input ûi,k as

possible while staying inside the certified space B̄k,

u∗ = argmin
u

N

∑
i=1

‖ui − ûi,k‖
2

s.t. ˙̄hi j(x)+ γ · sign(h̄i j(x)) · |h̄i j(x)|
ρ ≥ 0, ∀(i, j) ∈ Ek.

(11)

Here the forward invariance property of Finite-Time Con-

vergence Control Barrier Functions is used to ensure the

required communication graph structure is preserved.

In the second phase, the robots not only need to maintain

the communication graph required by behavior k, they also

need to actively assemble the communication graph required

by the next behavior. Therefore, the control input must satisfy

an additional constraint provided by B̄k+1,

u∗ = argmin
u

N

∑
i=1

‖ui − ûi,k‖
2

s.t. ˙̄hi j(x)+ γ · sign(h̄i j(x)) · |h̄i j(x)|
ρ ≥ 0, ∀(i, j) ∈ Ek,

˙̄hi j(x)+ γ · sign(h̄i j(x)) · |h̄i j(x)|
ρ ≥ 0, ∀(i, j) ∈ Ek+1.

(12)

In this case, the forward invariance property is used to ensure

the required communication graph structure Gk is maintained

while the finite-time convergence property is used to ensure

the required communication graph structure Gk+1 is formed

before behavior k+1 starts.

In summary, during the execution of behavior k, the

optimization-based behavior is given by,

u =











argmin
u∈B̄k

∑i ‖ui − ûi,k‖
2, if t ∈ [τk,τk+1 −∆k+1),

argmin
u∈B̄k∩B̄k+1

∑i ‖ui − ûi,k‖
2, if t ∈ [τk+1 −∆k+1,τk+1).

(13)



The minimally invasive control input can be obtained as a

solution to the above Quadratic Programming (QP) problem

since the objective in (13) is quadratic in u and the constraints

are linear in u. QPs can be solved very efficiently, which

enables real-time implementation of this framework.

B. Overarching Constraints

In addition to the communication graph requirements

given by the composability of behaviors, overarching con-

straints that need to be satisfied throughout the execution of

the sequence might be considered as well. For example, it is

important to ensure that the trajectories are collision-free and

the speeds of the robots are within their limits. In this section,

we will use collision-free constraints and speed limits as

examples to show how to incorporate overarching constraints

into the proposed behavior composition framework.

To produce collision-free motions, we encode collision

avoidance as an additional constraint in the optimization-

based controller. In this case, we need the collision-free

constraints be linear with respect to the control input to

preserve the efficiency of quadratic programming. As an

example, we consider the safety barrier certificates developed

in [5]. We refer the readers to [5] for detailed derivations and

proofs of the safety barrier certificates.

Consider any pair of robots i and j, a pairwise safe set

can be defined as,

Ci j = {x ∈ R
2N : hi j(x)≥ 0},

hi j(x) = (xi − x j)
⊤(xi − x j)−D2

s , ∀i > j,
(14)

where Ds > 0 is the safety distance that every pair of robots

need to maintain. The forward invariance of this pairwise

safe set can be ensured by the following constraint on control

barrier function hi j(x),

ḣi j(x)+α ·h3
i j(x)≥ 0, (15)

where α > 0 is a design parameter which serves a role similar

to the parameter γ in (9). To ensure collision-free trajectories,

all pairwise conflicts need to be be addressed. Thus, the

team-level collision-free set can be written as,

Cs =
⋂

{i, j∈V : i> j}

Ci j. (16)

Assembling both the communication graph barrier con-

straints and safety barrier constraints together, we can form

the certified admissible control space Bk(x),

Bk(x) = B̄k(x)∩

{u ∈ R
2N : ḣi j(x)+α ·h3

i j(x)≥ 0, ∀i > j}.
(17)

By constraining the control input u within the certified

space Bk(x), the robots will both stay collision-free and form

the required graph Gk within finite time.

Theorem IV.1. Given a required communication graph Gk =
(V,Ek) and a robotic team with initial state x0 ∈ Cs, any

continuous controller u(x) that satisfies the communication

graph and safety certificates Bk wil render the team collision

free and form the required graph Gk within finite time

duration Tk = max
{(i, j)∈Ek:x0 /∈C̄i j}

{ 1
γ(1−ρ) h̄i j(x0)

1−ρ}.

Proof. Since u(x) ∈ Bk(x) ⊆ B̄k(x), the robots will form

the required communication graph structure Gk within finite

time duration Tk according to Theorem III.2. The team is

guaranteed collision-free according to the forward invariance

property of the control barrier functions [5].

Additionally, we can assume that each robot i can not

reach a speed that is beyond its speed limit vi,max in each

dimension. Hence, we need u ∈U , where,

U =
{

u ∈ R
2N : ‖ui‖∞ ≤ vi,max, ∀i

}

. (18)

Consequently, the optimization-based controller respecting

safety constraints and speed limits is given by,

u =











argmin
u∈Bk∩U

∑i ‖ui − ûi,k‖
2, if t ∈ [τk,τk+1 −∆k+1),

argmin
u∈Bk∩Bk+1∩U

∑i ‖ui − ûi,k‖
2, if t ∈ [τk+1 −∆k+1,τk+1).

(19)

Note that since all the constraints in (19) can be written as

linear constraints, the resulting controller can still be solved

efficiently through quadratic programming in real-time.

V. EXPERIMENTAL RESULTS

In this section, we validate the behavior composition

framework through both numerical simulations as well as

robotic implementations. Towards the end of this section, we

discuss the choice of parameters for the Finite-Time Control

Barrier Functions in practice.

A. Simulation Results

We evaluate the framework presented in this paper by

simulating a team of 6 agents performing an environmental

exploration task. In particular, the robots were tasked with

reaching a region of interest, denoted by the blue ellipse, and

entering it. As discussed in Section II, the overall mission

is represented as a sequence of behaviors to be performed

sequentially by the robots. With reference to Fig. 3, the

sequence of behaviors was composed by an initial lattice

formation control, where robots gathered in the proximity of

their initial positions forming a regular lattice. After that,

a leader-follower behavior was employed, where agent 1

drove the team to a pre-assigned point close to the region

of interest. Once the region of interest had been approached,

a formation control behavior moved the agents into a cross-

shaped formation. In the final stage, through leader-follower

behavior, agent 6 moved the team inside the region. The

colored bar at the bottom of each figure represents the time

progress of the entire mission; each behavior is represented

by a light color, while darker colors denote the time during

which the robots were preparing for the following behavior.



(a) (b) (c)

(d) (e) (f)

Fig. 3: A sequence of behaviors representing an environmental exploration task. A team composed by six robots was tasked

with investigating a region of interest, denoted by the blue ellipse. Robots initially gathered under a lattice formation control

behavior; after that a sequence of leader-follower behaviors and formation control behaviors moved the agents close to the

region of interest and prepared the team for entering it. The mission was concluded with a final leader-follower behavior,

where agent 6 led the team inside the region. In the figure, gray lines denote the edges of the graph required by the current

behavior, while green lines represent the additional edges required by the next behavior.

B. Robotic Implementations

In this section we present results from the experiment

conducted on the Robotarium, a remotely accessible robotic

test-bed [20]. In the experiment, the robotic team executed

a sequence of behaviors consisting of a cyclic pursuit be-

havior, a lattice formation (Formation 1), a line formation

(Formation 2) and a square formation (Formation 3). The

correctness of behavior composition was formally guaranteed

by the framework introduced in this paper whereas safety of

the robots was encoded by the safety barrier certificates [5]

as an overarching constraint. Fig. 4 shows the snapshots

taken during the experiment. The robots were initialized with

a cycle formation and executed the cyclic pursuit behav-

ior. Next, the robots modified the cyclic pursuit behavior

to establish the required edges for the lattice formation

(Fig. 4a), and then formed the lattice formation (Fig. 4b).

After that the robot achieved a line formation and a square

formation successively in the similar manner (Fig. 4c–4f).

As is shown in Fig. 4, the edges required by each behavior

(red) remained connected throughout the execution, and the

additional edges required by the following behavior (blue)

were always established during the preparation period.

C. Discussions

Here, we discuss some practical considerations when im-

plementing the framework on robotic teams, including how

to determine preparation time duration ∆k for each behavior,

and how to choose the parameters γ and ρ for the control

barrier functions accordingly.

There are two fundamental ways to design preparation

time ∆k for each coordinated behavior k. The first one is

named as event-triggered where a fixed preparation time

∆k is specified ahead of time. The finite-time convergence

control barrier certificates are automatically activated at t =
τk −∆k, where the parameters γ and ρ in the control barrier

certificates are computed such that,

Tk = max
{(i, j)∈Ek:x(t)/∈C̄i j}

{

1

γ(1−ρ)
|h̄i j(x(t))|

1−ρ

}

≤ ∆k. (20)

The second approach is called self-triggered. In this case,

we specify fixed γ and ρ , and at each time, we check whether

the finite-time convergence control barrier certificates need

to be activated by the worst case scenario in the domain D ,

i.e., we activate the finite-time convergence control barrier

certificates at time t when,

τk−t ≤max
x∈D

max
{(i, j)∈Ek:x/∈C̄i j}

{

1

γ(1−ρ)
|h̄i j(x)|

1−ρ

}

+ε , (21)

where ε > 0 is a small positive scalar. Note that this way

of designing the preparation time often requires additional

knowledge about the domain of the joint state D , for

example, knowing that D is bounded or compact.



(a) Preparing for Formation 1 (b) Formation 1

(c) Preparing for Formation 2 (d) Formation 2

(e) Preparing for Formation 3 (f) Formation 3

Fig. 4: Experimental results for a team of nine mobile robots

executing a sequence of behaviors on the Robotarium test-

bed. The graphics were superimposed on the robot arena by

an overhead projector whereas the colors of the graphics are

augmented in the figures for the purpose of visualization.

The edges required by each behavior remained connected

(red) throughout its execution, and the additional edges (blue)

required by the following behavior were established during

the preparation time. Robots used in the experiments appear

different from [20] because a different tracking system was

used.

VI. CONCLUSIONS

The paper presented a framework that provides theoretical

guarantees on composition of coordinated behaviors for

teams of autonomous robots. To achieve provably correct

composition, Finite-Time Convergence Control Barrier Func-

tions were proposed so that the robots can assemble the

required communication graph structure within a specified

finite interval of time. The control barrier function-based

framework actively modifies the behaviors in the minimally

invasive way so that the requirements for each single be-

havior are satisfied when executed in sequence. Simulation

results and experimental results on a team of mobile robots

validated the effectiveness of the proposed behavior compo-

sition framework.
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