
On the Trade-Off Between Communication and Execution Overhead

for Control of Multi-Agent Systems *

Anqi Li† and Magnus Egerstedt†

Abstract— For multi-agent systems, it is common to encode
the task as an optimization problem with two distinctly different
solution methodologies – one is to directly apply control inputs
as optimization updates, the other is to solve the optimiza-
tion problem through communications before applying actual
control inputs. This reveals an important trade-off between
communication and execution overhead for control of multi-
agent systems. To formally study this trade-off, we restrict
our consideration to a class of commonly studied multi-agent
problems where the objective function is the sum of a set
of edge potential functions. The gradient descent algorithm
and Newton’s method are viewed as the proxy for the pure
execution and the pure communication strategy, respectively.
We propose an algorithm based on truncated Newton’s method
that provides tunable levels of trade-off between communication
and execution efforts. Theoretical results on the convergence
rate of the purposed algorithm are studied for the consensus
problem under different trade-off strategies. The performance
of the proposed algorithm is validated through simulation.

I. INTRODUCTION

In the multi-agent systems literature, it is common to en-

code the team-level, global task as an optimization problem

with respect to a performance objective function [7], [10],

[13]. Consequently, the control and coordination strategies

are essentially distributed optimization algorithms with re-

spect to the objective function [4], [6]. There are two fun-

damentally different ways, however, to perform optimization

updates as multi-agent systems. One way is to directly apply

the control inputs based on on-board sensor measurements.

We name this type of updates as execution updates. The

other is to update local decision variables through inter-agent

communications, which we call communication updates.

As a result of that, there have been two methodologies for

solving the underlying optimization problem. One method-

ology purely relies on execution updates, which has been

investigated extensively in a lot of applications, such as

rendezvous [12], [13], formation controls [10], coverage con-

trols [7], etc. The other methodology is to use communication

updates to find an optimal or a near optimal solution to the

optimization problem, then apply control inputs to drive the

system to the solution directly. This methodology is used in

applications such as multi-robot motion planning [5], [8].

We observe that the two methodologies are essentially

trade-off strategies that result from different assumptions on

communication and execution cost. In particular, the pure

*This work was sponsored by Grant No. W911NF-17-2-0181 from the
U.S. Army Research Laboratory DCIST CRA.

†Anqi Li and Magnus Egerstedt are with the Institute for Robotics and
Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332,
USA. Email: {anqi.li, magnus}@gatech.edu

execution strategy implicitly assumes that communication is

much more expensive than execution, and hence the strategy

surrenders the use of communications for a lower cost.

For example, for underwater robots [9], communications

may involve moving to the surface, which comes with a

high risk of being detected by adversarial agents, while

operating in the deep water is relatively safe and hence more

desirable. Conversely, the pure communication strategy can

be resulted from assuming execution cost is much higher

than communication cost. One example is light-weighted

quadcopters [14] in a laboratory environment. Communica-

tions are inexpensive since the communication bandwidth is

high and the privacy requirement is low. However, the cost

for moving is relatively high since the battery-life of these

quadcopters are usually short.

In this paper, we make an attempt to address this afore-

mentioned trade-off between communication and execution

for multi-agent systems. We seek to understand the condition

under which one methodology would be preferred over the

other, and whether using a strategy that is in between the two

could provide potential advantages. The main challenge to

this work is that the two methodologies have been developed

independently at large. Therefore, they have different under-

lying assumptions and performance metrics. This makes it

difficult to directly compare one algorithm against another.

To focus on the trade-off between communication and

execution, we restrict our consideration to a class of com-

monly studied multi-agent system problems where the ob-

jective function is the sum of a set of symmetric, edgewise

potential functions [6], [10]. For this class of problems, the

gradient descent algorithm can often be distributedly exe-

cuted through a weighted consensus protocol [6]. Therefore,

the gradient descent algorithm is a valid representative of

the pure execution strategy. On the other hand, Newton’s

method is generally known to provide faster convergence

compared to the gradient descent algorithm [4]. However, it

involves an inversion of the Hessian matrix of the objective

function, which often requires global information. Therefore,

communications are needed for performing Newton updates.

This makes Newton’s method an appropriate proxy for

the pure communication strategy, especially for quadratic

problems. To solve for the Newton updates, we design a

distributed communication update procedure based on the

gradient descent algorithm. Inspired by truncated Newton’s

method [11], we discontinue the communication procedure

after a fixed number of updates to execute the resulting

inexact Newton update, and iterate this process. This algo-

rithm provides a mechanism for allocating efforts between

1

1
1

1

2
2

2

2

......

execution

k

k+1

k+2
k+3

(a) Pure execution strategy

1 1 1 1

2 2 2 2 2

...

...

1

k k+1 k+2 k+3

execution

communication

(b) Pure communication strategy

1

2

1

2

...

...

1 1

2 2

1

2

execution

k k+1

k+3

k+4

k+2

communication

(c) Mixed strategy

Fig. 1: Strategies for solving a 2-agent consensus problem: (a) the pure execution strategy where optimization updates are

directly taken as control inputs, (b) the pure communication strategy where the optimization problem is solved through

communication before a final execution, and (c) the mixed strategy where the communication updates (blue) and execution

updates (red) are interleaved. To study the trade-off between communication and execution, we propose a general strategy

that (a), (b) and (c) are special cases of it.

communication and execution through the truncation value.

It also provides a consistent metric for comparing different

trade-off strategies.

It is worth mentioning that this paper differs from the

broad literature of distributed optimization [2], [3], [16],

[17] for the following reason. In the distributed-optimization,

the goal is to design an algorithmic procedure to find an

optimal or near-optimal solution. As a result of that, there

are usually no physical concepts of communication and

execution. The performance of algorithms are often evaluated

by their convergence rates. This paper, in contrast, focuses

on understanding how to analyze the actual incurred costs

of optimization algorithms that interleave communications

and executions. One of the exceptions is the adaptive cost

framework [1], which shares a similar insight to this paper.

The difference is that it considers the trade-off between com-

munication cost and computation cost rather than execution.

The main contribution of this paper is three-fold. Firstly,

we discover the fundamental trade-off between communica-

tion and execution overhead which is implicitly considered

in most multi-agent algorithms, and introduce a performance

metric for evaluating the trade-off strategies. Secondly, we

propose an algorithm that supports tunable levels of trade-off

between communications and executions to represent differ-

ent trade-off strategies for a class of commonly studied multi-

agent problems. Thirdly, we analyze the convergence prop-

erties of the proposed algorithm for the consensus problem,

and derive the optimal strategies for different assumptions of

communication and execution cost.

II. BACKGROUND AND PROBLEM STATEMENT

We consider a multi-agent system consisting of N agents.

The agents are indexed over i∈ [N] = {1, . . . ,N}. Each agent

i has an associated state vector xi ∈ R
d . The agents are

modeled as discrete-time systems with dynamics,

x+i = xi + ui, ∀ i ∈ [N], (1)

where x+i is the state of agent i at the next time step. Let

x = [x⊤1 , ...,x
⊤
N]
⊤ ∈ R

Nd and u = [u⊤1 , ...,u
⊤
N]
⊤ ∈ R

Nd denote

the ensemble state vector and control input for the multi-

agent system, respectively.

In order to focus on the trade-off between communication

and execution, we assume that the system is associated with a

fixed, connected, and undirected underlying communication

graph. The communication graph structure for the system

is defined as G = (V,E), where V = [N] is the vertex set

consisting of N agents and E ⊆ V ×V is the set of edges

denotes the communication links between agents. We denote

the set of neighbors of each agent i as,

Ni = { j ∈V : (i, j) ∈ E}. (2)

The agents are assumed to be equipped with sensors to

measure the state displacement with their neighbors, i.e.

(xi− x j), for all j ∈Ni. However, each agent does not have

the sensing modality to measure the state xi directly. For

example, in multi-robot systems, the robots equipped with

laser scanners can measure the relative positions of their

neighbors, while the absolute positions can not be measured.

We denote the graph Laplacian for the communication

graph as L ∈ R
N×N , given by

L = [li j], li j =







deg(i) if i = j,
−1 if (i, j) ∈ E,
0 otherwise,

(3)

where deg(i) = |Ni| is the number of agents that are adjacent

to agent i. Let G o = (V,Eo) be a directed graph introduced

through G by arbitrarily assigning orientation to the edges.

The incidence matrix D ∈ R
N×|E| for G o is given by,

D = [di j], di j =







−1 if vi is the tail of e j ∈ Eo,
1 if vi is the head of e j ∈ Eo,
0 otherwise.

(4)

It can be shown that L = DD⊤.

We are interested in solving optimization problems over

the multi-agent system. In particular, we consider the objec-

tive function to be the sum of the set of symmetric, twice-

differentiable, pairwise potential functions E (‖xi− x j‖) be-

tween every pair of agents i and j that are adjacent in the

communication graph, i.e.

min
x

J(x) =
1

2

N

∑
i=1

∑
j∈Ni

E (∆i j), (5)

where ∆i j = ‖xi− x j‖.
This is a general formulation for a lot of multi-agent

problems, such as rendezvous and formation controls, etc.

For the sake of simplicity, we assume that the agents are in a

1-d space, i.e. d = 1, when deriving the gradient and Hessian

for the cost function J(x). We refer the readers to [15] for

the general expressions when d > 1.

One common feature for this class of problems is that,

the gradient descent update rule for (5) corresponds to a

weighted consensus protocol,

∇J(x) = Ddiag

{

[

1

‖xi− x j‖
∂E

∂∆i j

]

(i, j)∈E

}

D⊤ x

.
= DW (x)D⊤ x = Lw x.

(6)

Then by chain rule, we have,

∇2 J(x) = D

(

W (x) + diag

{

[

∂w(i, j)

∂xi
(xi− x j)

]

(i, j)∈E

})

D⊤

.
= DV (x)D⊤ = Lv,

(7)

where w(i, j) denotes the diagonal entry of W corresponding

to the edge (i, j). By their definitions, W (x),V (x) ∈R
|E|×|E|

are diagonal matrices.

Note that although we restrict our attention to the problems

in the form of (5), the algorithm introduced in this paper is

in fact applicable to any objective function that satisfies the

following condition,

∇J(x) = (D ⊗ Id)W (x)(D⊤ ⊗ Id)
.
= Lw x,

∇2 J(x) = (D ⊗ Id)V (x)(D⊤ ⊗ Id)
.
= Lv,

(8)

where ⊗ denotes the Kronecker product, and W (x) =
blk-diag({W(i, j)(xi,x j)}(i, j)∈E) ∈ R

|E|d×|E|d and V (x) =

blk-diag({V(i, j)(xi,x j)}(i, j)∈E) ∈ R
|E|d×|E|d are block diago-

nal matrices, where each diagonal block is a d× d matrix.

One can see that when d = 1, the condition is satisfied

for the objective function (5). Further, it is shown in [15]

that the gradient vector and the Hessian matrix satisfy the

condition (8) when d > 1. The conditions can be interpreted

as a second-order structure perseverance condition of the

objective function, i.e. its gradient vector and Hessian matrix

respect the sparsity structure of the communication graph.

III. DISTRIBUTED TRUNCATED NEWTON’S METHOD

In this section, we present an algorithm that deliber-

ately considers the trade-off between communication and

execution. The gradient descent algorithm is considered

as a representative of the pure execution strategy since it

can be executed distributedly under our assumptions, while

Newton’s method is viewed as a proxy for the pure commu-

nication strategy due to its faster convergence compared to

the gradient-descent method [4]. However, Newton’s method

can not be implemented distributedly in general since solving

for the Newton’s step involves solving a group of linear

equations. The motivation of the proposed algorithm comes

from the truncated Newton’s method [11] which has an inner

loop that approximately solves for the Newton’s step in an

iterative manner. The truncated Newton’s method pauses the

inner loop after a fixed number of iteration and then uses the

resulting inexact Newton’s step for the optimization update.

Then, the process is repeated until convergence. In the

proposed algorithm, we design an inner loop that computes

the Newton update through local communications. By the

nature of the truncated Newton’s method, we can adjust the

amount of effort allocated to the communication updates by

changing the truncation value – with more communication

iterations in the inner loop, we get a better estimate of the

Newton’s step, and hence get faster convergence rate with

respect to execution updates.

By plugging in the Hessian and the gradient (8), the update

rule for Newton’s method becomes,

x+ = x − y,

y = (L†
v Lw)x,

(9)

where L†
v denotes the Moore–Penrose pseudoinverse of the

weighted graph Laplacian matrix Lv. It should be noticed

that the update rule (9) can not be directly computed through

local interactions since L†
v does not have the same sparsity

structure as the communication graph. Therefore, solving for

(9) requires global information that is not directly available

to each of the agents.

We propose to solve for the Newton update y iteratively

through the gradient descent algorithm. Notice that y is

the minimizer of the local quadratic approximation of the

objective function at x, i.e.

y = argmin
z

1

2
z⊤Lv z − x⊤Lw z. (10)

Therefore, the Newton update y can be solved through

gradient descent updates with respect to (10),

y+ = y − η Lv y + η Lw x, (11)

where η > 0 is the step size of the gradient descent algorithm.

Then, the algorithm can update the state variables by

executing the update rule for the state variables,

x+ = x − y. (12)

There are a few important notes to the proposed update

rules. First, although the update rules (11) and (12) are

presented in a centralized manner using the ensemble state,

the update rules can be implemented in a fully distributed

way. For each agent i, the update rules for xi and yi are,

x+i = xi − yi

y+i = yi − η ∑
j∈Ni

(

V(i, j) (yi − y j) −W(i, j) (xi − x j)
)

, (13)

where W(i, j) and V(i, j) denotes the block diagonal entry

corresponding to the edge (i, j) of W and V , respectively.

Therefore, only local interactions are required to compute

the updates. The distributed implementation of the truncated

Newton’s method is presented in Algorithm 1.

The second note is that the update rules for solving (11)

and (12) are fundamentally different in the sense that (12)

involves updating the actual state variable, which means that

one need to actually drive the agent using controls. While

(11) only involves updating the local decision variable, hence

y can be updated through communications without applying

actual control inputs.

Algorithm 1 Truncated Newton’s Method

Require: K ≥ 1,η > 0,Ni

yi← 0

while True do

for k = 1 to K do

evaluate W(i, j), V(i, j)

y+i ← yi − η ∑ j∈Ni

(

V(i, j) (yi − y j) −W(i, j) (xi − x j)
)

end for

xi← xi− yi

end while

IV. CONVERGENCE RATE OF THE TRUNCATED

NEWTON’S METHOD

In this section, we analyze the convergence rate of the

algorithm for the 1-dimensional consensus problem. We

choose the 1-d consensus problem for the following two

reasons. First, it is an important proxy for a large number

of commonly studied multi-agent problems such as forma-

tion controls and distributed estimation [10]. Moreover, the

consensus problem itself is of special importance since it

can be served as an algorithmic building block for a lot of

distributed optimization algorithms.

However, before analyzing the convergence property, we

need to first introduce how to define the convergence rate

of algorithms in the situation we are considering. As is

mentioned in Section III, we observe that control and co-

ordination for multi-agent systems involve two kinds of fun-

damentally different updates – communication updates and

execution updates. Communication updates involve exchang-

ing messages about local decision variable between adjacent

agents in the communication graph, while execution updates

involve exerting control inputs using only on-board sensor

measurements. The cost of communication and execution

is very application dependent. Therefore, it is necessary to

take into account the distinctions between communication

and execution updates, as well as the setting of the problem,

when analyzing the performance of the algorithm.

To analyze the convergence rate of the algorithm, we

assume that the cost for each communication update and

execution update is cc and ce. The cost can encode safety,

time consumption, energy consumption, and disturbance

intensity, etc. We are interested in the convergence rate of

the algorithm with respect to the total cost incurred, rather

than the number of update steps. Formally, let nc and ne be

the number of communication and execution steps. The total

cost is given by,

c = cc nc + ce ne (14)

We study the 1-d consensus problem as a proxy to a class

of multi-agent problems discussed in Section II. The goal

of the 1-d consensus problem is to drive the agents to a

common coordinate on the real line. One way of approaching

the problem to optimize the objective function,

min
x

J(x) =
1

2

N

∑
i=1

∑
j∈Ni

‖xi− x j‖2 =
1

2
x⊤Lx. (15)

It can be shown that ∇J = Lx, and ∇2 J = L. Hence, the

objective function in (15) satisfies the constraints (8) we

defined in the problem statement. Therefore, we can solve

the consensus problem through the proposed distributed

truncated Newton’s method.

Let each agent maintain a local decision variable yi as the

estimate to the Newton’s step. We can solve for the Newton

update y through the gradient descent algorithm,

y+ = y − η Ly + η Lx, (16)

where y = [y1,y2, . . . ,yn]
⊤. Assume that the communication

updates (16) are executed for K times before each execution

step, we have,

yK+ = (I − ηL)K y +
K−1

∑
t=0

(I − ηL)K−t−1 η Lx

= (I − (I − η L)K)x + (I − η L)K y.

(17)

Therefore, the dynamics of the discrete-time system can

be rewritten as,
[

x+

yK+

]

=

[

(I−ηL)K −(I−ηL)K

I− (I−ηL)K (I−ηL)K

][

x

y

]

. (18)

The convergence rate for the truncated Newton’s method

is summarized in the following Theorem.

Theorem IV.1. Given the consensus problem (15) with

a fixed, connected and undirected communication graph.

Assume that the step size η is chosen such that 0 < η <
1

λmax(L)
. Let the second largest eigenvalue of matrix (I−ηL)

be λ . Then λ satisfies 0< λ < 1, and the truncated Newton’s

method converges to the consensus subspace C = {(x,y) : x∈
span{1N},y ∈ span{1N}} with a rate of convergence (with

respect to the total cost) dictated by γT N = λ
K

2Kcc+2ce .

Proof. Let δ ∈ R
2N denote the orthogonal projection of the

vector [x⊤ y⊤]⊤ onto the orthogonal complement of the

consensus subspace,

δ =

[

x

y

]

− 1

N

[

(1T x)1
(1T y)1

]

. (19)

We need to show that δ converges to zero with a rate of

convergence that is dictated by λ
K

2Kcc+2ce .

For notational convenience, let M = (I − ηL)K . By as-

sumption, L has one eigenvalue at 0 and N−1 eigenvalues in

the range of (0, 1
η). Hence, 0 < λ < 1 and the second largest

eigenvalue of M is λ K . The dynamics of the projection δ is,

δ+ =

[

M −M

I−M M

]

δ
.
= Aδ . (20)

That is, δ satisfies the same dynamics as [x⊤ y⊤]⊤. By

facts from linear algebra, the eigenvalues of A are given

by {µ ± i
√

µ−µ2 : µ is an eigenvalue of M}. Hence, the

matrix A has 2N−2 stable eigenvalues and an eigenvalue λ0

of value 1 that has geometric multiplicity of 1 but algebraic

multiplicity of 2. However, the span of the generalized

eigenvectors corresponding to λ0 is C . But δ ∈C⊥. Hence, δ
decades exponentially. Further, the largest non-one singular

value for the matrix A is |λ K± i
√

λ K−λ 2K |= λ K/2. Hence,

‖δ+‖ ≤ λ K/2‖δ‖. (21)

Since each update of δ involves K communication updates

and 1 execution update, the convergence rate of the algorithm

is dictated by,

γT N =
(

λ K/2
)

1
Kcc+ce

= λ
K

2Kcc+2ce . (22)

On the other hand, the gradient-descent update law for the

objective function is,

x+ = x − η Lx = (I − η L)x. (23)

The gradient-descent update rule respects the communica-

tion structure as the update η Lx can be computed through

local interactions. The convergence rate for the gradient

descent algorithm is summarized in the following Theorem.

Theorem IV.2. Given the consensus problem (15) with a

fixed, connected and undirected communication graph. As-

sume that the step size η is chosen such that 0< η < 1
λmax(L)

.

Let the second largest eigenvalue of matrix (I−ηL) be λ .

Then λ satisfies 0 < λ < 1, and the gradient descent algo-

rithm converges to the consensus subspace C = span{1N}
with a rate of convergence that is dictated by γGD = λ

1
ce .

Proof. Since 0 < η < 1
λmax(L)

, the eigenvalues of the matrix

(I−ηL) has one eigenvalue at 1 and N− 1 eigenvalues in

the range of (0,1). Therefore, 0 < λ < 1. Let δ ∈RN denote

the orthogonal projection of the vector x onto the orthogonal

complement of the consensus subspace. According to [10],

‖δ+‖ ≤ λ‖δ‖. (24)

Since each update of δ involves a cost of ce, the conver-

gence rate of the algorithm is dictated by,

γGD = λ
1
ce . (25)

Therefore, the algorithm converges to the consensus subspace

with a rate of convergence dictated by γGD = λ
1
ce .

We are interested in how the performance of the pro-

posed truncated Newton’s method and the gradient descent

algorithm are related to the parameters K, cc and ce. Since

0 < λ < 1, the proposed algorithm outperforms the gradient

descent algorithm when,

cc ≤
K−2

2K
ce. (26)

This provides an analytic criterion on choosing between pure

execution strategy and the strategies involve communica-

tions. The result is consistent with the common intuition that

the pure execution strategy is preferred when communica-

tions are very expensive and the communications should be

taken use of when the cost of execution is relatively high.

Another observation is that the convergence rate is mono-

tonically increasing with respect to K. This means that

regardless of the value of cc and ce, it is always better to run

the communication update until convergence for the trun-

cated Newton’s method, rather than terminate early and take

actions based on a premature estimate of the Newton update.

This observation, combined with the previous fact, implies

that the most efficient solution to the consensus problem

is either (i) conduct pure communication-based update until

convergence then drive the system directly to the optimum

(when moving is expensive) or (ii) perform execution updates

always (when communication is expensive). This observation

aligns well with existing literature on multi-agent systems,

where most of the work either focuses on pure execution

updates or pure communication updates.

It is also noteworthy that when communication and execu-

tion are the same and both equal to 1, the convergence rate

of the algorithm is equivalent to the convergence rate in the

optimization sense. In this case, we have,

γT N = λ
K

2K+2 ≥ λ = γGD (27)

This means that in the optimization point of view, the

distributed truncated Newton’s method is always inferior to

the gradient descent algorithm. However, we have seen from

the previous discussion that the truncated Newton’s method

can indeed over-perform the gradient descent algorithm when

the actual cost is considered. Therefore, approaching the

problem from a pure optimization point of view may fail

to fully address the practical situation, and hence may lead

to sub-optimal strategies.

V. SIMULATION RESULTS

In this section, we study the performance of the proposed

algorithm through numerical simulation. We consider two

multi-agent problems, a 1-d consensus problem, and a 2-d

formation control problem. In both problems, we consider a

team of 6 agents with a fixed communication graph structure

shown in Fig. 3. We use the 1-d consensus problem to

validate the theoretical results developed in Section IV, and

use the formation control problem to show the applicability

of the proposed algorithm beyond the consensus problem.

A. Consensus

We first study a 1-d consensus problem to validate the

theoretical results we developed in Section IV. We consider

a team of 6 agents with the communication graph shown in

Fig. 3a. The agents are initialized with the ensemble state

x0 = [−10,−6,−1,5,6,10]⊤. The goal for the agents is to

rendezvous at a single point on the 1-d real line. As is

discussed in Section IV, the instantaneous state of the system

is evaluated by the objective function J(x) = 1
2

x⊤Lx.
We are interested in the convergence rate of the objec-

tive function under the algorithms we discussed, namely,

the truncated Newton’s method and the gradient descent

0 50 100 150

Total Cost

10
-15

10
-10

10
-5

10
0

10
5

O
b

je
ct

iv
e

F
u

n
ct

io
n

K=1

K=5

K=15

K=25

GD

(a) cc = 1,ce = 1

0 50 100 150

Total Cost

10
-15

10
-10

10
-5

10
0

10
5

O
b

je
ct

iv
e

F
u

n
ct

io
n

K=1

K=5

K=15

K=25

GD

(b) cc = 1,ce = 3

0 50 100 150

Total Cost

10
-10

10
-5

10
0

10
5

O
b

je
ct

iv
e

F
u

n
ct

io
n

K=1

K=5

K=15

K=25

GD

(c) cc = 1,ce = 10

Fig. 2: The value of the objective function with respect to the total cost incurred for the 1-d consensus problem. The truncated

Newton’s method gains more advantage over the gradient descent algorithm as ce/cc and K increases. The performance

of the truncated Newton’s method is improved as K increases. The gradient descent algorithm out-performs the truncated

Newton’s method when cc = ce. Note for the logarithmic scale. Notice that different curves have different spacing since the

cost of operations is different across figures, and the objective function is only evaluated at execution steps.

(a) Consensus (b) Formation Control

Fig. 3: The communication graph structure for (a) the con-

sensus problem and (b) the formation control problem in the

numerical simulation.

algorithm. We study how the performance of the truncated

Newton’s method varies with respect to the truncation value

K under different combinations of the communication cost

cc and execution cost ce. In particular, we consider the case

when K ∈ {1,5,15,25}, and (cc,ce)∈ {(1,1),(1,3),(1,10)}.
The performance of the truncated Newton’s method and the

gradient descent algorithm is also compared. The step sizes

of all the algorithms are fixed as η = 0.1. The performance

of the algorithms with respect to the total incurred cost is

presented in Fig. 2. Notice that different curves have different

spacing since the objective function is only evaluated during

the execution step, and as a result, the truncated Newton’s

method has fewer data points. Also note that the objective

function values are in logarithmic scale.

In Fig. 2, we observe that the gradient descent algorithm

converges linearly for the consensus problem. The truncated

Newton’s Method also converges in a linear manner for the

consensus problem. The convergence rate of the truncated

Newton’s is monotonically improving with respect to K.

However, the effect of K decreases as K becomes larger. For

example, the curves for K = 15 and K = 25 are relatively

close in all three figures.

In the case of cc = ce = 1 (Fig. 2a), the gradient descent

algorithm out-performs the truncated Newton’s method for

all values of K, which is consistent with the analysis in

Section IV. We see that the truncated Newton’s method

with K = 5 and the gradient descent method converges in

a similar rate when cc = 1 and ce = 3. This is also consistent

with (26) since 2K
K−2

= 3.3. We also see that the truncated

Newton’s method gains more advantage over the gradient

descent algorithm as the ratio ce/cc increases.

B. Formation Control

To evaluate the applicability of the proposed algorithm

to problems beyond the consensus problem, we consider

a 2-d formation control problem. This problem is different

from the consensus problem since the objective function is

no longer quadratic, and hence, Newton’s method loses its

exactness when applied to this problem. In the formation

control problem, the agents are required to form a regular

hexagonal formation with length size 1. The agents are

initialized with a regular hexagonal formation, but with a

length size of 2. One way to encode the formation control

problem is to define the objective function as in [10],

J(x) =
1

4

N

∑
i=1

∑
j∈Ni

(‖xi− x j‖2 − d2
i j)

2, (28)

where di j is the distance between agent i and agent j in the

desired formation. Then, the objective function satisfies the

condition (8) with

Lw = (D ⊗ I2)blk-diag
(

{(

‖xi− x j‖2−d2
i j

)

I2

}

(i, j)∈E

)

(D⊤ ⊗ I2),

Lv = (D ⊗ I2)blk-diag
(

{

2(xi− x j)(xi− x j)
⊤+

(

‖xi− x j‖2−d2
i j

)

I2

}

(i, j)∈E

)

(D⊤ ⊗ I2).

(29)

In the simulation, we fix the step size to be η = 0.01. As is

in the consensus problem, we also consider K ∈{1,5,15,25},
and (cc,ce) ∈ {(1,1),(1,3),(1,10)}. The performance of the

algorithms with respect to the total incurred cost is presented

in Fig. 4. We see that the relative performance of the

algorithms is similar – (i) the truncated Newton’s method

gains more advantage over the gradient descent algorithm as

ce/cc and K increases, (ii) the performance of the truncated

0 50 100 150 200 250 300

Total Cost

10
-5

10
0

O
b

je
ct

iv
e

F
u

n
ct

io
n

K=1

K=5

K=15

K=25

GD

(a) cc = 1,ce = 1

0 50 100 150 200 250 300

Total Cost

10
-5

10
0

O
b

je
ct

iv
e

F
u

n
ct

io
n

K=1

K=5

K=15

K=25

GD

(b) cc = 1,ce = 3

0 50 100 150 200 250 300

Total Cost

10
-5

10
0

O
b

je
ct

iv
e

F
u

n
ct

io
n

K=1

K=5

K=15

K=25

GD

(c) cc = 1,ce = 10

Fig. 4: The value of the objective function with respect to the total cost incurred for the 2-d formation control problem.

Similar observation is obtained compard to Fig. 2, although the algorithms no longer converge linearly.

(a) Gradient Descent (b) Truncated Newton K = 25

Fig. 5: The trajectories of the agents in the formation control

problem under (a) the gradient descent algorithm and (b) the

truncated Newton’s method with K = 25. The agents take

more direct paths in the case of truncated Newton’s method

when K = 25. The gray hexagon denotes the final formation.

Newton’s method is improved as K increases, (iii) the gradi-

ent descent algorithm out-performs the truncated Newton’s

method when cc = ce. In contrast to the consensus problem,

however, the gradient descent algorithm no longer converges

linearly. The reason is that the formation control problem

(28) is no longer strongly convex. Therefore, a fixed step

size can no longer achieve linear convergence.

To get a better intuition on how the execution cost can be

traded off by the communication cost, we present the actual

trajectory taken by the agents under the gradient descent

algorithm and the truncated Newton’s method with K = 25.

The trajectories are shown in Fig. 5. We see that the agents

take more direct paths under the truncated Newton’s method.

Therefore, by paying the cost of communication, the agents

can indeed carry out execution steps more efficiently.

VI. CONCLUSION

This paper focuses on understanding the trade-off between

communication and execution overhead for control of multi-

agent systems. To provide a consistent metric for different

trade-off strategies, we propose an algorithm based on the

truncated Newton’s method. The proposed algorithm can

adjust the amount of effort allocated to communication

and execution. Convergence analysis of the algorithm for

the consensus problem shows that the optimal strategy is

either pure communication-based or pure execution-based,

which aligns well with existing multi-agent approaches. The

performance of the proposed trade-off strategy is validated

through numerical simulation.

REFERENCES

[1] A. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei. Balancing
communication and computation in distributed optimization. IEEE

Transactions on Automatic Control, 2018.
[2] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computa-

tion: numerical methods, volume 23. Prentice hall Englewood Cliffs,
NJ, 1989.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. Distributed
optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends R© in Machine learning,
3(1):1–122, 2011.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[5] S. Chopra, G. Notarstefano, M. Rice, and M. Egerstedt. A distributed
version of the hungarian method for multirobot assignment. IEEE

Transactions on Robotics, 33(4):932–947, 2017.
[6] J. Cortés and M. Egerstedt. Coordinated control of multi-robot

systems: A survey. SICE Journal of Control, Measurement, and System

Integration, 10(6):495–503, 2017.
[7] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage Control

for Mobile Sensing Networks. In Robotics and Automation, 2002.

Proceedings. ICRA’02. IEEE International Conference on, volume 2,
pages 1327–1332. IEEE, 2002.

[8] Y. Diaz-Mercado and M. Egerstedt. Multirobot mixing via braid
groups. IEEE Transactions on Robotics, 33(6):1375–1385, 2017.

[9] G. A. Hollinger, S. Choudhary, P. Qarabaqi, C. Murphy, U. Mitra, G. S.
Sukhatme, M. Stojanovic, H. Singh, and F. Hover. Underwater data
collection using robotic sensor networks. IEEE Journal on Selected

Areas in Communications, 30(5):899–911, 2012.
[10] M. Mesbahi and M. Egerstedt. Graph Theoretic Methods in Multiagent

Networks. Princeton University Press, 2010.
[11] S. G. Nash. A survey of truncated-newton methods. Journal of

computational and applied mathematics, 124(1-2):45–59, 2000.
[12] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and

cooperation in networked multi-agent systems. Proceedings of the

IEEE, 95(1):215–233, 2007.
[13] R. Olfati-Saber and R. M. Murray. Consensus problems in networks

of agents with switching topology and time-delays. IEEE Transactions

on automatic control, 49(9):1520–1533, 2004.
[14] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian. Crazyswarm:

A large nano-quadcopter swarm. In Robotics and Automation (ICRA),

2017 IEEE International Conference on, pages 3299–3304. IEEE,
2017.

[15] Z. Sun and T. Sugie. Identification of hessian matrix in distributed
gradient-based multi-agent coordination control systems. arXiv

preprint arXiv:1805.02832, 2018.
[16] E. Wei and A. Ozdaglar. Distributed alternating direction method of

multipliers. 2012.
[17] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed newton method

for network utility maximization–i: Algorithm. IEEE Transactions on

Automatic Control, 58(9):2162–2175, 2013.

